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Using nonequilibrium molecular-dynamics simulations, we study the temperature dependence of the nega-
tive differential thermal resistance that appears in two-segment Frenkel-Kontorova lattices. We apply the
theoretical method based on Landauer equation to obtain the relationship between the heat current and the
temperature, which states a fundamental interpretation about the underlying physical mechanism of the nega-
tive differential thermal resistance. The temperature profiles and transport coefficients are demonstrated to
explain the crossover from diffusive to ballistic transport. The finite-size effect is also discussed.
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Negative differential thermal resistance �NDTR� is a
property of certain materials connected to two heat baths in
which, over certain temperature ranges, heat current is a de-
creasing function of the temperature difference between the
two heat baths, i.e., dJ /dT�0, here J and T are the heat
current and the temperature, respectively. Li and co-workers
�1–4� investigated different kinds of systems to reveal that
negative differential thermal resistance is not a happenstance
and indeed takes place in low-temperature nonlinear lattices
for a certain range of parameters. It is naturally expected that
NDTR effects may lead to an impressive technological inno-
vation and even the appearance of the thermal transistor,
which maybe change our world thoroughly in future, just
like what electronic transistor and other relevant devices
have done in the past half century �1,5,6�.

Although thermal transistor is confirmed by nonequilib-
rium molecular-dynamics simulations, the practicable coun-
terpart using fabricated materials is not produced up to now
�1�. As the main physical mechanism of thermal transistor,
NDTR effect as well as asymmetric heat conductance still
need to be understood deeply �7�. The phenomenon of
NDTR is first understood from the mismatch between the
phonon bands of the two interface particles �1�. In Refs.
�8,9�, the authors reported that the phonon bands are inde-
pendence of the system size but the NDTR disappears for the
large system. Segal �4� suggested that NDTR shows up when
the molecular is strongly coupled to the thermal baths in an
asymmetric system. However, the NDTR in the absence of
asymmetry is still not clear �10�. Therefore, the mismatch of
the phonon bands and asymmetry are not a real physical
mechanism of the NDTR. To reveal the real physical mecha-
nism of the NDTR is still one of the new and challenging
problems about thermal transport.

Macroscopic Fourier’s law, J=−��T, that connects heat
current with thermal transport on the microscopic scale is an
empirical law based on observation, where �T is the tem-
perature gradient and � is the thermal conductivity. It states
that the heat current through a material is proportional to the

negative temperature gradient. On the other hand, according
to microscopic thermodynamics, heat current at low tem-
perature is proportional to the number of phonons �11�. A
phonon is a quantized mode of vibration occurring in a rigid
crystal lattice, such as the atomic lattice of a solid �12�. The
Bose-Einstein probability distribution for phonons, based on
statistical mechanics concepts for thermal equilibrium, deter-
mines the number of phonons. Thus, the heat current is also
determined by the Bose-Einstein probability distribution. In
this Rapid Communication, applying an analytical method
from Landauer equation as well as nonequilibrium
molecular-dynamics simulations, we reveal the dependence
of the NDTR on the temperature and the crossover of two
thermal transport processes: the ballistic transport and the
diffusive transport �13�. We will also investigate the system
size dependence of the NDTR. The temperature profile and
the transport coefficient will be calculated to characterize the
ballistic transport and the diffusive transport.

The nonlinear lattices that we use in this Rapid Commu-
nication consist of two segments, left �L� segment and right
�R� segment. Each segment is a Frenkel-Kontorova �FK� lat-
tice. Segments L and R are coupled via a spring of constant
Kint. The total Hamiltonian of the model is

H = HL + HR + Hint, �1�

and the Hamiltonian of each segment can be written as

HM = �
i=1

NM � pM,i
2

2mM
+

KM

2
�qM,i+1 − qM,i�2 +

VM

�2��2cos�2�

a
qM,i�	 ,

�2�

with qM,i and pM,i denote the displacement from equilibrium
position and the conjugate momentum of the ith particle in
segment M, where M stands for L or R. The parameters K
and V are the harmonic spring constant and the strength of
the external potential of the FK lattice, respectively. We
couple the last particle of segments L and R via a harmonic
spring. Thus, Hint=

Kint

2 �qL,N−qR,N�2. We set m=a=1,
KL=1.0, KR=0.2, VL=5.0, VR=1.0, and Kint=0.05.*wrzhong@hkbu.edu.hk
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In our simulations we use fixed boundary condition and
the chain is connected to two heat baths at temperatures TL
and TR. We use the Nosé-Hoover heat baths and integrate the
equations of motion by using the fourth-order Runge-Kutta
algorithm �14–16�. The local temperature is defined as Ti
= 
pi

2�. The local heat flux is defined as ji=KM
pi�qi−qi−1��,
and the total heat flux is J=Nj. The simulations are per-
formed long enough to allow the system to reach a steady
state in which the local heat flux is constant along the chain.
For the sake of comparison, we define a heat current ratio,
JR=J /Jmax, in which Jmax is the maximum heat current under
a fixed temperature TR of the right heat bath. The transport
coefficient is an important quantity for characterizing the
transport mode of a thermal transport process �17–19�. The
thermal conductance evaluated as �=Nj / �T represents an
effective transport coefficient that includes both boundary
and bulk resistances �20�.

Figure 1 displays a typical negative differential thermal
resistance �1�. When the temperature difference increases
�i.e., TL��TR� decreases�, the heat current increases first and
then decreases. The former is positive differential thermal
resistance �PDTR�, and the latter is negative differential ther-
mal resistance. It would be much interesting to show the
thermal conductance dependent behavior of NDTR, which is
also presented in Fig. 1. It is clearly that the NDTR corre-
sponds to the ballistic regime and PDTR the diffusive re-
gime. The phenomenon of NDTR can be understood from
the theoretical approach. We use Landauer equation to cal-
culate the heat flux. For example, in the ballistic regime the
phonon heat flux can be also calculated through a Landauer-
type expression �21�,

J =� d�������nR��� − nL���� , �3�

where ���� is the temperature-independent transmission co-
efficient for phonons of frequency �. Here nM���
= �e	M�−1�−1 and 	M =1 /kBTM �M =L ,R� is the Bose-
Einstein distribution characterizing the heat baths.

As reported in Ref. �4�, under the assumption of weak
system-bath interactions and when going into the Markovian
limit, the probabilities Pn to occupy the n state of the phonon
are found to satisfy the master equation

Ṗn = �n + 1�kdPn+1 + nkuPn−1 − �nkd + �n + 1�ku�Pn, �4�

here the occupations are normalized �Pn=1, and kd and ku
are the vibrational relaxation and excitation rates, respec-
tively.

When going into weak system-bath interaction, kd and ku
can satisfy

kd = kL + kR,ku = kLe−	L�0 + kRe−	R�0, �5�

with kM =
M����1+nM��0��, where nM���= �e	M�−1�−1,

M���= �

2m�2 �� j
2���−� j� and � j = �̄ j


2m�0; here, m, �0,
and �̄ j are the molecular oscillator mass, frequency, and cou-
pling between the system and the heat baths, respectively.

The thermal properties of our model are obtained from the
stationary state solution of Eq. �4�. The thermal flux is given
by

J = �0 � n�kLPn − kLPn−1e−	L�0� . �6�

Here the positive sign denotes current flowing from right to
left. In this equation the first term indicates the thermal flux
flowing from the L chains into the L heat bath. The second
term gives the oppositely flowing flux from L heat bath to the
chain. The thermal flux could be equivalently calculated at
the R chain.

So for the asymmetry system, which is similar to the case
of a highly anharmonic molecule coupled-possible
asymmetrically-but linearly, to two heat baths of different
temperatures. Here, we simulate strong anharmonicity by
modeling the anharmonic two-segment chains by a two lev-
els system that notes a highly anharmonic vibrational mode
�4�. The Hamiltonian for this model is the same as presented
in Eq. �1�, except that we take n=0,1 only. Following Eqs.
�3�–�6� and going into the classical limit, the heat current
reduces into the simple form

J = �0

L
R�nR − nL�


L�1 + 2nL� + 
R�1 + 2nR�
�7�

=

L
R


L + 
R

�0

Ts
�TR − TL��exp��0/Ts� + 1�−1,

�8�

in which

Ts =

LTL + 
RTR


L + 
R
. �9�

We can now clearly seek the main factors which influence
the heat current. The thermal flux is given by multiplying
the following four terms: �1� a symmetric prefactor

L
R / �
L+
R�, �2� the characteristic frequency and effective
temperature �0 /Ts, �3� the temperature difference �TR−TL�,
and �4� the molecular occupation factor �exp��0 /Ts�+1�−1

�4�. This expression denotes that the heat current is mainly a
competitive effect between the temperature difference and
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FIG. 1. �Color online� The temperature dependence of heat
current ratio �blank squares� and the corresponding temperature
dependence of the thermal conductance �solid circles�. The system
parameters are NL=NR=50, VL=5.0, VR=1.0, KL=1.0, KR=0.2,
Kint=0.05, and TR=0.21.
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the molecular occupation factor. In the case of low tempera-
ture �i.e., in the ballistic regime�, the molecular occupation
factor changes obviously with Ts by going into an exponen-
tial function, while in the case of high temperature �Ts
�0,
indicates the diffusive regime� the molecular occupation fac-
tor is a constant 1/2.

Figure 2 shows the simulated results of the temperature
dependence of NDTR. When TR is small, there exists NDTR.
As TR increases, however, the NDTR disappears. As also
shown in Fig. 3, a theoretical estimation �Eq. �8�� based on
Landauer equation confirms this temperature dependence of
NDTR simultaneously.

Why does the NDTR appear at low temperature and dis-
appear at high temperature? This phenomenon can be also
understood in detail from the crossover from the diffusive to
ballistic transport. In the case of low temperature TR, as
shown in Fig. 4�a�, when TL changes from TR to zero, the
temperature profiles of the lattices illustrate a zero-
temperature gradient. This diffusive-ballistic transition with
temperature difference is also shown in Fig. 4�b�. When the
temperature difference is small, the thermal conductance

does not change with TL. However, when the temperature
difference is large, the thermal conductance decreases lin-
early with TL decreasing. It can be interpreted that the
diffusive-ballistic transition induces the NDTR, which takes
place just when the ballistic transport prevails over the dif-
fusive transport. In the case of high temperature TR, even
when TL is very small, the temperature gradient are nonzero
and the thermal conductance does not change with TL. There
exists no diffusive-ballistic transition. Therefore, the NDTR
does not occur in the case of high temperature TR.

We would also like to discuss the finite-size effect of
NDTR. As shown in Ref. �9�. When the system size in-
creases, the phenomenon of NDTR disappears. It is interest-

FIG. 2. �Color online� Heat current ratio as a function of the
temperature TL for TR=0.11, 0.31, 0.51, and 1.01. The system pa-
rameters are VL=5.0, VR=1.0, KL=1.0, KR=0.2, Kint=0.05, and
NL=NR=50.

FIG. 3. The temperature dependence of heat current. Results are
obtained from Eq. �8� with TR=200 K �full�, 100K �dash�, and 50K
�dot�. The remaining parameters are �0=150 meV, 
L=1.0 meV,
and 
R=1.4 meV.
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FIG. 4. �Color online� �a� Temperature profiles of the lattices for
different heat baths for TL=0.02. �b� Thermal conductance as a
function of the temperature TL /TR for different temperatures
TR=0.11, 0.21, 0.41, 0.81, and 1.01 �from bottom to top�. The re-
maining parameters are the same as for Fig. 2.

σ

FIG. 5. �Color online� Thermal conductance versus lattice
length N�=NL+NR� for TR=0.21 and TL=0.05 �triangles�, 0.07
�circles�, and 0.15 �squares�. The remaining parameters are the
same as for Fig. 2.
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ing to present the system size dependence of thermal con-
ductance, which is shown in Fig. 5. In the ballistic regime
�i.e., when the system size is much smaller than the phonon
mean free path�, thermal conductance increases linearly with
the system size. In the diffusive regime �i.e., when the sys-
tem size increases to far larger than the phonon mean free
path�, thermal conductance will be independence of the sys-
tem size. There exists a crossover from ballistic to diffusive
transport with the increase in the system size. When the sys-
tem goes to completely diffusive transport regime, the tem-
perature difference does not change the transport mode and
then the NDTR disappears.

In conclusions, we have found the physical mechanism of
the negative differential thermal resistance in two-segment
asymmetric FK chains through both theoretical analyses and
numerical simulations. From the analytical relationship be-
tween the heat current and the temperature, the NDTR effect
can be understood from a competition between the tempera-
ture difference and the molecular occupation factor. In the
ballistic regime the molecular occupation factor mainly de-

pends seriously on the temperature. However, in the diffusive
regime, the molecular occupation factor is a constant. The
NDTR effect occurs just because the decrease in the molecu-
lar occupation factor is faster than the increase in the tem-
perature difference. The main factors that influence the trans-
port modes of the phonons are the temperature and the
system size. We propose that different system structures can
affect the temperature dependence of NDTR through chang-
ing the transmission mode of the phonons. When there exists
a crossover from diffusive to ballistic transport, the NDTR
can be observed, otherwise it will not. Due to the rigorous
condition of validity: low temperature and small system, we
still have a long way to go before the NDTR effect is pro-
duced in fabricated materials.
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